Tag Archives: hands-on

How do you science?

Yesterday in class one of my students asked “am I sciencing right?”

After giving him a high five for cleverness, I got to thinking more seriously about that question. In courses like Drama, Art, Music, and Physical Education the students spend a minimal amount of time learning theory, and maximal time practising it. Doing it.

In Science, at least in the introductory courses, there seems to be so much emphasis on basic facts that there is little time left to do science, or as my student would to science. Now, admittedly, there is several centuries worth of background to what goes on in our daily lives. Even up through much of my undergrad studies my courses were pumping me full of background knowledge, with little emphasis on doing science. It wasn’t until my undergraduate thesis and grad school that I got to actually science.

Science is often touted as a subject that requires inquiry, but most science courses actually don’t. Researching facts is an important aspect of science, but it is the preliminary legwork before the actual science begins. When we actually science, we are actively investigating and experimenting, troubleshooting, problem solving, analyzing, and synthesizing. Using our brains, designing, building, testing.

I realize there are some programs, such as the modelling method, that allow (or require!) students to science in high school, but availability and training for these types of programs is not (yet) widespread. I think it’s time to spread the science. If you implement a course, particularly an introductory science course at any level, that is built on students actively doing science, I would like to hear from you. How do you science?

 

Random thoughts on things to implement in my class

There are lots of strategies I would like to try in my classroom, but I’m not always sure how they would work. But here are a few of the ideas I have been tossing around, in no particular order:

  • Make MUCH more use of google tools – I picked up a lot of great ideas at the GAFE summit in April, and I’m dying to put them to practical use. Pages, shared resources, research tools built in, no losing documents.
  • 20% time – based on the Google model, where employees spend 20% of their time on a project of their choice.
  • On the Fly response forms – using a generic response form and creating questions each day to go with the questions, and/or using it as an exit ticket
  • more portfolio, journaling, less testing – build emphasis on ongoing learning, break the dependency on cramming and memorization
  • “tests” as formative – Despite making practice tests available, I find students rarely make good use of them, and then doing poorly on a test comes as a complete surprise. I have considered giving tests, just as they are, as a means of  providing feedback on what students still ned to know before they complete their work on the unit – whatever that might be.
  • “streamed” course for layering/differentiation – allow students more choice in how they complete each unit. Offer perhaps three “pathways” through a unit, from more traditional reading/lecture/worksheet, to grad-school like complete independent research, with a kind of hybrid/pbl in between.
  • change the way I assess. I need to a) make students more independent and responsible for their own learning, b) make it more meaningful, ans c) make it less onerous for me.
  • flipped classroom/blended learning – get more videos up, migrate my notes online, build the course in google sites as a sort of online textbook, complete with embedded docs for students to contribute like a wiki
  • Project/inquiry based learning. I really like the concept of the modelling method. The problem is that much of the material in grades 9 and 10 is purely factual, which leaves little room for inquiry.
  • introduce students to formal logic early. Hey, it’s science. Causation vs correlation is something science students really need to know.
  • make simple interactives. Flash, Construct 2, whatever. But something that can be embedded.
  • 3 before me – help to emphasize that I may be AN expert but not THE expert, and help break their dependence on me as the sole source of knowledge. They have to consult three other sources (classmates, textbook, internet, for example) before they ask me.
  • provide a road map of the course, that students must fill out as they go, with links to their work – students often ask what we did last class, or what we are doing next class. If i provide them with a syllabus/sequence on google drive, they can make a copy, and turn each heading into a link to their own work as we go along.
  • change the way I assess – Definitely.
  • “do I get it” self-assessment checkpoints
  • Incorporate Karplus learning cycle – important, particularly in science, but tricky to make relevant when the information is predominantly fact-based.
  • have students measure and graph everything they possibly can – It’s science. Measuring and graphing are what we do.
  • Maker Spaces – I love the idea of a maker space classroom. Making something is an incredible exercise in problem solving in the real world, and students don’t get nearly enough of it.
  • Change the way I assess. ‘Nuff said.

I don’t yet know how I can implement any of this properly, and implementing all of it is nigh impossible. But I know I have to make changes, and starting with a list of possibilities seems like as good a place as any.

 

Why can’t we follow a recipe?

Chances are you know someone who can’t follow a recipe. When they try your favourite recipe, it comes out as a disaster. Why is that? Why is it that someone following step by step instructions can mess it up so badly?

I don’t know the answer for sure, but I suspect it has something to do with lack of familiarity. It seems perhaps ironic that in order to follow a set of step by step instructions you need to know what you are doing already, but I think that is what is required, and here’s why: If you don’t know what you are doing, you won’t know if you made a mistake, whereas if you have an idea what you are doing, you can recognize mistakes and correct them along the way.

The same is true for lab activities. Many of them are cookbook style, with step-by-step instructions. And foolishly we think, well, how can they possibly screw up? And the answer, I’m afraid, is very easily. Step by step instructions instil a false sense of confidence. Students, like cooks who can’t follow a recipe, assume that they have done each step correctly, because they don’t necessarily have the experience to recognize missteps.

The other day in Biology class we were using the popular pop-beads to simulate mitosis and meiosis. They are good in that they give students a tactile, visual representation that they can manipulate and see the process as dynamic, as opposed to series of discrete steps. But it was a disaster. The set comes with very explicit, step-by-step instructions. But either they could not follow the directions, or they were so focussed on the directions they virtually ignored the beads, or they simply skipped the beads altogether and drew the results from memory, rather than observation.

Next time I try this lab, I will do it very differently. I will introduce them to the beads one day, have them plan out exactly how they would represent the steps, and then on lab day have them make a stop-motion animation of the sequence of events in Meiosis. That way they are responsible for planning it out, and will have an idea what it should look like, so they can recognize mistakes when they arise, and then the videos can be critiqued afterwords to see if there are any glaring (or subtle) errors or omissions.

Now I just have to keep this in mind going forward, and plan ahead knowing that cookbook activities (not just labs) have a built-in human flaw.

Shouldn’t it be blue?

I love how people think, and I love teachable moments.

We were using extracted red cabbage juice as a pH indicator today, and a student came to ask what he should do if he made a mistake. I asked what had gone wrong, and he said “Something happened with our strong base sample. It’s yellowy green, but it should be dark blue”.

Since this was the part of the lab where we were observing what the colours were, I asked him why he thought it should be dark blue. His reasoning went like this: neutral is purple, mild acid (pH=3) was light pink, strong acid (pH=1) was red. Mild base (pH=9) was blue, and therefore, strong base should be dark blue. Rather than simply correct his misconception (which was, after all, a hypothesis based on extrapolation), I simply had him take another sample.

His result? Yellow green. He faced a pre-conception head on, verified for himself his results, learned that double checking results is valid, and that things can sometimes – but not always – be extrapolated. Lots of learning from one little transaction. Yay science!

Real Educational Technology

I have mentioned before how I became a convert to smart phones – indeed, I have become a full-fledged cyborg with mine – and I still keep finding new ways to use my iPhone for education.

Just today I got so excited with what I was looking at under the microscope I decided I had to share it. So I whipped out my phone, captured a bunch of clips, edited them, and then posted the result to facebook and YouTube, all from the phone. Now THAT is real-world, authentic educational technology.

Enjoy:

(PS – go full screen. It’s high res!)

Check Out Project Noah!

 

I’m not sure why it took me so long to discover Project Noah. It is a citizen science community that, in their words, is intended to be “a fun, location-based mobile application to encourage people to reconnect with nature and document local wildlife”. Essentially, you take pictures of animals and plants, and upload to the Project Noah website. But it is based around smartphones. With the app installed on your iPhone or Android, users can snap anything interesting (or mundane, too) and upload. You have the option of identifying what you have uploaded, or requesting identification. The location information can optionally be attached to help learn more about geographic distribution. There is also a social network for chats and discussion, and even patches for accomplishments.

The images and locations are searchable online, so it can be used by amateurs and researchers alike, and as they say their “ultimate goal is to build the go-to platform for documenting all the world’s organisms and through doing this we hope to develop an effective way to measure Mother Nature’s pulse.”

I uploaded my first image today of a snail (me: “Oh! Gotta take a pic of this snail!” My wife: “Geek”),  and I took the time to double check the identification and enter that information. I think there is potential for this to be used in the classroom in many ways – an image resource, a class project or hands-on biodiversity lesson. Having to take a few minutes to identify and classify what has been found is an extra layer of analysis and engagement which requires a bit of patience, but pays off.

Of course, now that I have my first upload, I’m hooked. And, as with my snail picture, I expect to be called a geek a lot more often…

 

The Sorcerer’s Apprentice, or Never Use a Formula You Don’t Understand

In my grade 10 Science class I recently gave my students an introductory microscope lab, and in my haste I used a “canned” lab from a textbook. Although there are some good activities in this lab, students are presented with a number of equations for determining FOV and magnification, including:

These equations, at face value, are straightforward – in other words they can plug in the numbers and get an answer. But there I something subtly insidious about them – they are just confusing enough that students are unable to apply these formula correctly later. Why? Because they are overly scripted, making the calculations look more complicated than they are, implying that without the formulas, they would not be able to achieve the “correct” answer. They build a reliance on formula, rather than concepts – and formulas without knowing what they mean can lead to trouble – much like poor Mickey’s spell in The Sorcerer’s Apprentice.*

So after an abysmal assessment (which was in part a setup – I could see they were becoming formula dependent), I gave them the following question:

Both images represent the view through the same microscope, with exactly the same settings. How big is the object in the second image?

Their first question? “Which formula do we use?”

My response was a shrug.

I watched as they struggled – one or two figured it out pretty quickly, but others tried dividing the object width (~12mm) by 7 (and some by 8!), some multiplied by 7, some divided by 40 (the circle diameter), but it was clear they were searching for a magic formula. Some, after scowling for a good long time, finally asked “which units do we use? Millimeters or UM’s?” (Aaaagh! That’s not a U! That’s a µ!)

It was challenging to subtly hint at how to simply measure the object without “giving” them the answer, because I didn’t want them to revert to the mindset of me, the teacher, as the sole gatekeeper of knowledge. Eventually they worked it out. Some estimated, some marked off the length of the object on a pencil or sheet of paper and held it to the millimeter scale, and the cleverer ones borrowed a friend’s sheet and held them together in front of a light. (And those that just used someone else’s numbers, well, I had multiple versions of the sheet, so they invariably had to redo it anyway!)

The next question was a bit more involved. I said the view in the image above was through a microscope with 10x ocular and 2x objective. I then asked what the FOV would be using a 20x objective. Despite my earlier warning stay clear of equations for this exercise, I saw many pulling out the equations from the previous lab. And that’s where they really got into trouble…

Numbers were thrown willy-nilly into the equations in the hope that somehow they were correct. Several students, despite correctly identifying the magnifications as 20x and 200x, wrote out

40 / 200 = 7mm / x

When I asked where the 40 came from, they said “low power on a microscope is 40x”.

“All microscopes?” I asked. That threw them.

Eventually I helped them work out that the higher magnification was ten times the lower magnification, so the view would be zoomed in ten times as close. The FOV should then be 10x as small (which is in itself a tricky concept, students are tempted to say 10 times the magnification means bigger, so the FOV is 10 times bigger). For most it eventually clicked that 10x the magnification means the field diameter is 10x smaller. Simple and no formulas to memorize.

It was remarkable, in a way, that a simple set of four of these questions took them a full 80 minute period – but that was mainly because I wouldn’t let them get away with wrong answers. One could call it a waste of a period, but I would not. It was absolutely necessary.

This is exactly the kind of thing Eric Mazur talks about. I will definitely be doing more of these exercises in the future!


*I mean the Fantasia version. Though that scene is included in the recent Nicholas Cage film.

A Foray into “non-traditional instruction”

This year, with the Ecology unit in my Grade 9 Science classes, we focused heavily on invasive species. So after seven weeks of class (we have each class every other day), I think I gave a total of 4 traditional lessons. Instead, we researched invasive species in Ontario, hiked into the park adjacent to the school to locate, identify, and map out the extent of invasive plants such as buckthorn, dog-strangling vine, Norway maple and European reed. We did further research on why these things are a problem, and then (with, I’ll admit, just a bit of prompting) the students discovered that local garden centres are selling several plants that are on the official Ontario invasive species list.

So we decided to do something about it. The students have been writing letters, and then peer-editing, and compiling and synthesizing the best bits into group letters, which I then went over with them in a serious way to ensure the message was clear, the tone was appropriate, and the information was factual. During this process several students asked “we’re not really going to mail these are we?” To which I replied there is no point in writing them if we aren’t going to mail them. Knowing these were now “real” letters, and not just mock letters for my benefit, got most of them working to make sure they were of high quality.

They are composing letters to the city councilor, the mayor, the parks department, the provincial Ministry of Natural Resources, the Minister of natural resources, the premier, the local MPP, the local federal MP, the federal Ministry of the Environment, and the CEO’s of the major garden centres. If we don’t get at least a couple of responses, I will be disappointed.

We have spent as much (if not more) time talking about the importance of a well-structured argument, the tone of a letter, conciseness, how to edit, and how to find out who to send letters to as we have on community interactions and nutrient cycles. And yet, this holistic approach hit as many of the curriculum expectations – though not as explicitly – as a series of lectures would.

For a unit assessment, I decided to go with two things, a poster where they can “brag” about the action they have taken to help with invasive species, and a portfolio of sorts. This is what I have asked of them to demonstrate what they have learned:

The Portfolio must include an item (either works or notes you have produced, or items that you have found) and an explanation of how that item can be used as evidence for each of the following open ended questions. The explanation part for each should be at least a few paragraphs – you are, after all, trying to convince me that you learned something:

  1. Something you learned that you found interesting or surprising
  2. Something you were particularly proud of learning, producing, or creating, or something you found particularly challenging
  3. What you learned about the dynamic nature of ecosystems
  4. Something you learned about the impact of human activities on the sustainability of ecosystems

I don’t know quite how I will evaluate this yet, I think I need to have the students help me with that. We’ll see how it goes.

It was kind of strange teaching like this, I’ll have to admit, but rewarding for the students (well, the ones who have taken it seriously) and me. I liked doing something real, and having the kids see for themselves the extent of invasiveness. But the sad thing is now we will be switching topics, and I have no idea how I can do something like this for the basics of atomic structure and the periodic table.

 

Simple analogy for homologous chromosomes

I am teaching Grade 11 Biology this year for the first time in seven or eight years, and quite enjoying it. One thing about doing a course you haven’t taught in a while is the joy of going back through your old notes and resources – it’s a bit like reading your old diary entries. There’s a bit of nostalgia for things you remember, and excitement at finding things you had forgotten.

In this age of computers, I sometimes forget how I used to explain things without having a zillion graphics and animations at my fingertips. One such explanation was for homologous chromosomes and the concept of alleles. I find that, despite the simplicity, many students have difficulty with the terminology and with conceptualizing genes and alleles. So the analogy I would use is clothing. I would have two students (ideally of similar height) represent a homolgous pair of chromosomes. Each “chromosome” has a gene for shoes, for socks, pants, and shirt. But the alleles may be different – one student might have the Doc Martin allele of the shoe gene, while the other has the All Stars allele. They might both have the blue jeans allele for the pants gene, and so on (of course, now I work at a school with student uniforms, so I have to compare my clothes to theirs to get different alleles).

It is a simple, low tech demonstration, but it seems to be quite effective at getting the point across.

Bingo! From academic to authentic

This year, for the ecology unit in grade 9 Science I decided to focus on invasive species. The Ministry of Natural Resources and other non-government organizations have been putting out plenty of information on invasive plants and animals in the province, and I decided it was time to look at the real thing, rather than paper case-studies. After a period of research on what an invasive species is, and what is invasive locally, we went down into the valley next to the school to see what we could find. We found some Norway maples, but mostly buckthorn and dog strangling vine – everywhere.

While some students dutifully noted the extent of infestation on their maps, it wasn’t until the fourth group I took out that one of the girls piped up with “Why doesn’t somebody DO something about all this?”

Bingo!

With that simple question, the concept of invasive species switched from an academic one to an authentic one. We will now spend the next few weeks doing something about it.

I love it when that happens.

 

image from toronto.ca